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Abstract—Risks and returns are inevitably interlinked in today's work-a-day real world financial 

transactions. In particular, a financial portfolio illustrates the situation in which a combination of financial 

instruments/assets describes this interrelation in terms of their correlation in a particular market condition. 

The field of portfolio management has assumed importance of late, thanks to the need for decision making in 

investment opportunities in a high-risk scenario. It addresses the risk-reward tradeoff allocation of 

investments to a number of different assets so as to maximize returns or minimize risks in a given investment 

period. In this paper, a particle swarm optimization procedure is used to evolve optimized portfolio asset 

allocations in a volatile market condition. The proposed approach is centered around optimizing the Value-

at-Risk (VaR) measure in different market conditions based on several objectives and constraints. 

Applications of the proposed approach are demonstrated on a collection of several financial instruments. 

 

Keywords: Portfolio Management; Financial Instruments; Value-at-Risk; Particle Swarm Optimization 

I.  INTRODUCTION 

Risks and returns are inevitably interlinked in today's work-a-day real world financial transactions. In particular, a 

financial portfolio illustrates the situation in which a combination of financial instruments/assets describes this 

interrelation in terms of their correlation in a particular market condition. The field of portfolio management has 

assumed importance of late, thanks to the need for decision making in investment opportunities in a high-risk 

scenario. It addresses the risk-reward tradeoff allocation of investments to a number of different assets so as to 

maximize returns or minimize risks in a given investment period. Markowitz [1] recommended that an investor 

should not select his/her assets due to only characteristic features, but he/she needs to consider how each asset has 

co-moved with all other assets at hand. Markowitz quantified risk as the standard deviation of returns. He showed 

how the diversification into several investments that have limited or no positive correlation in their movements can 

reduce overall risk. According to Markowitz, this movement is measured by a correlation coefficient varying 

between +1 and -1. From the properties of correlation coefficient therefore, two investments with a positive 

correlation will move in lock-step forward with one another, while those with a negative correlation will move in 

exactly in the opposite direction. As the correlation coefficient is a quantitative measure of the variance of a 

portfolio, any coefficient less than +1 will reduce the overall variance of that portfolio. 

Subject to the same expected yield/return, if these co-movements are taken into account [2], an investor can 

construct a portfolio having a lesser risk than a portfolio constructed without paying any heed to the interaction 
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between securities. This model was later modified by Black [3] to allow short-selling of assets or negative weights of 

assets, thereby forming a closed form solution to the problem. 

A plethora of approaches in the lines of risk management to solve the portfolio optimization problem are reported 

in the literature [4] [5]. Most of these techniques mainly incorporate a combination of portfolio states thereby 

rendering the problem intractable and time-complex. Moreover, these techniques suffer from their inability to tackle 

the underlying nonlinearities in the objectives and constraints in the problem. Mokhtar et al. presented a review of 

mathematical programming models for portfolio optimization in [6]. A new family of estimators of the covariance 

matrix that relies solely on forward-looking information of the assets for portfolio optimization is introduced in [7]. 

Value-at-Risk (VaR) [8] [9] [10] is a measure of how the market value of an asset or of a portfolio of assets is 

likely to decrease over a certain time period (usually over 1 day or 10 days) under typical market conditions. The 

power of VaR lies in its generality. Unlike market risk metrics such as the Greeks, duration, convexity or beta, which 

are applicable to only certain asset categories or certain sources of market risks, VaR is common and general. It is 

based on the probability distribution function (PDF) for a portfolio's market value. All liquid assets have uncertain 

market values, which can be characterized with probability distributions. All sources of market risk contribute to 

those probability distributions. Being applicable to all liquid assets and encompassing, at least in theory, all sources 

of market risk, VaR is a broad metric of market risk. 

The generality of VaR poses a computational challenge. In order to measure market risk in a portfolio using VaR, 

some means must be found for determining the probability distribution of that portfolio's market value. Obviously, 

the more complex a portfolio is, the more asset categories and sources of market risk it is exposed to, i.e. the more 

challenging that task becomes. A VaR calculates an amount of money, measured in that currency, such that there is 

that probability of the portfolio not loosing that amount of money over that horizon. In the terminology of 

mathematics, this is called a quantile, so one-day 90% USD VaR is just the .90-quantile of a portfolio's one-day loss. 

To be precise, VaR is a quantile of loss. The task of a value-at-risk measure is to calculate such a quantile. Banks, 

broker dealers and investment banks use VaR to measure the market risk of their proprietary owned assets. VaR 

varies widely depending on the conditions, asset class, historical performance, volatility/standard deviation, 

downside risk and expected shortfall. The VaR approach to risk management aims to consolidate in a consistent way, 

at the organization or entity level, the risks inherent in a portfolio of various classes of financial instruments.  The 

results are expressed as a single number - the VaR i.e., in terms of the maximum expected loss, the confidence 

interval of the loss and the number of days in the risk period. 

In this paper, a novel approach for achieving an optimized solution to the portfolio evolution problem is 

presented. The proposed approach is centered around the optimization of the VaR measures of a portfolio comprising 

several financial instruments in different market conditions based on several objectives and constraints. Applications 

of a particle swarm optimization based VaR optimization procedure are demonstrated with reference to the 

minimization of the risks involved in the portfolio under consideration, thereby minimizing the portfolio loss 

incurred. 

Section II of the paper provides an overview of the Value-at-Risk (VaR) measure used for portfolio risk 

management analysis. Section III elucidates the mathematical formulation of the VaR measure. The different models 

for the computation of VaR are discussed in Section IV. A brief description of the particle swarm optimization 

procedure along with the associated algorithm is illustrated in Section V. The results of the findings are summarized 

in Section VI. Finally, Section VII draws a line of conclusion with future directions of research.  

II. VALUE-AT-RISK (VAR) 

In economics and finance, VaR is defined as the maximum loss which does not exceed with a given probability 

(the confidence level) over a given period of time or horizon. VaR is most commonly used by security firms or 

investment banks to measure the market risk of their asset portfolios (market value at risk). It is widely applied in 

finance for quantitative risk management for many types of risk. However, it might be noted at this point that VaR 

does not give any information about the severity of loss by which it exceeds. 

Estimation of three parameters is required for the determination of VaR. These are (i) the time horizon (period) to 

be analyzed, which relates to the time period over which a financial institution is committed to holding its portfolio, 

or to the time required to liquidate assets. Typical time horizons are 1 day, 10 days, or 1 year, (ii) the confidence 
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level, which is the interval estimate in which the VaR would not be expected to exceed the maximum loss. 

Commonly used confidence levels are 99% and 95%. However, confidence levels are not indications of probabilities, 

and (iii) the unit of VaR, which is given in a unit of the currency. 

Given a probability p and K days, where p and K must be predetermined by the risk manager, VaR is defined as a 

number such that there is a probability p of exhibiting a worse return over the next K days. VaR is thus simply a 

quantile of the return distribution and thus does not reflect anything about the risk distribution. More important, it 

does not indicate as to how large the likely magnitude of losses is on those days when the return is worse than the 

VaR. On the other hand, Expected Shortfall (ES), which is defined as the expected return conditional on the return 

being worse than the VaR, has been suggested as an alternative to VaR. Needless to state, in spite of all these 

limitations, VaR still remains to be the most common risk metric used in practice. 

 

A VaR enabled given portfolio asset allocation model should posses the following characteristics: 

 

1. The asset allocation model should be a fully specified data-generating and data-intensive one which can 

be estimated and implemented on daily returns for portfolios with a large number of varied assets. 

2. It should allow the computation of VaR for any prespecified level of confidence (p) and for any horizon 

of interest (K) subject to the current market conditions.  

3. It should also be flexible enough to allow calculation of risk measures other than VaR. The model should 

reflect the following itemized facts of daily asset returns in order to deliver accurate risk predictions:  

• Daily returns should have little or no exploitable conditional mean predictability. The variance of 

daily returns should be predictable and should greatly exceed the mean return.  

• Daily returns are not normally distributed. Even after standardizing daily returns by a dynamic 

variance model, the standardized daily returns are not normally distributed. Positive and negative 

returns of the same magnitude may have different impacts on the variance. 

4. The correlations between assets should appear to be time-varying.  

5. As the investment horizon increases, the return data distribution should approach the normal distribution.  

 

Thus, given these salient features of daily asset returns, a portfolio optimization technique involving the VaR 

reduces to building a dynamic market risk management model that contains only few parameters to be estimated, and 

that is easily implemented on a large set of assets. 

III. MATHEMATICAL FORMULATION 

As already stated, VaR is an important measure of the exposure of a given portfolio to different kinds of risk 

inherent in financial environments, which can be used for portfolio optimization purposes. 

Given a portfolio P composed of k assets S = {S1, S2…Sk}, and W = {W1, W2…Wk} the relative weights or 

portions of the assets in the portfolio, the price of the portfolio at time t is given by  

∑
=

=
k

i

ii WtStP
1

)()(                          (1) 

where, Si(t) and Wi are the value and importance level of the portfolio at time t, respectively. 

 

The VaR of the portfolio P, which is the maximum expected loss over a holding period at a given level of 

confidence (α), can then be defined as the smallest number l such that the probability by which the loss L exceeds l is 

not larger than (1 - α), i.e., 

})(:inf{}1)(:inf{ ααα ≥∈=−≤>∈= lFRllLPRlVaR L
      (2) 

IV. COMMON VAR CALCULATION MODELS 

A plethora of techniques and models for estimating VaR from the time horizon, confidence level and the unit of 

VaR is available in the literature [9] [10] [11] [12] [13] [14]. Each of the techniques and models relies on a set of 
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assumptions of its own. However, the most common assumption is that the best estimator for future changes in 

market conditions is the historical trace of market data. Some of the well-known models for estimating VaR include: 

 

1. Variance-Covariance (VCV) model – It assumes that the risk factor returns are always (jointly) normally 

distributed and that the portfolio return is normally distributed. It also assumes that the change in portfolio value is 

linearly dependent on all risk factor returns. The variance-covariance or the delta-normal model was popularized by 

J.P Morgan in the early 1990s. The assumption that the portfolio return is normally distributed implies that the 

portfolio is composed of assets, whose deltas are linear, i.e., the change in the value of the portfolio is linearly 

dependent on all the changes in the values of the assets. This further implies that the portfolio return is also linearly 

dependent on all the asset returns and that the asset returns are jointly normally distributed. Further assuming that the 

only risk factor associated with a portfolio is the value of the portfolio itself, the 95% confidence level VaR for N 

assets over a holding period, is given by 

)645.1( pppVVaR σµ −−=                     (3) 

where, the mean µp is given by 
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and, the standard deviation σp is given as 
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Here, i refers to the return on asset i and p refers to the return on the portfolio for standard deviation (σp) 

and mean (µp). Vp is the initial value of the portfolio (in currency units). ϖi is the ratio of Vi to Vp. ∑ is the 

covariance matrix between all the N asset returns. 

The benefits of the VCV model are the use of a more compact and maintainable data set, which can 

often be bought from third parties, and the speed of calculation using optimized linear algebra libraries. 

Drawbacks include the assumption that the portfolio is composed of assets whose delta is linear and the 

assumption of a normal distribution of market price returns/asset returns. 

 

2. Historical Simulation (HistSim) model – It has emerged as the industry standard for computing VaR. This 

model is based on the assumption that the asset returns in the future will have the same distribution as they had 

in the past (historical trace). HistSim is the simplest and most transparent method of calculation. This involves 

running the current portfolio across a set of historical price changes to yield a distribution of changes in portfolio 

value, and computing a percentile (VaR). The benefits of this method are its simplicity of implementation. 

Added to it, it does not assume a normal distribution of asset returns like the VCV model. The main drawbacks 

are the requirement for a large market database and the computationally intensive calculation. 

 

In HistSim, VaR is evaluated as: 

1033.2 pMVaR σ=                                (6) 
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where, M is the market value of the portfolio, σp is the historical volatility of the portfolio. The constant 

2.33 stands for the number of σp needed for a certainty level of 99% and the constant √10 refers to the number of 

days in the holding period. 

Basically, the HistSim method computes VaR in two simple steps. First, a series of pseudo-historical 

portfolio returns are constructed using today's portfolio weights and historical asset returns. Second, the quantile 

of the pseudo-historical portfolio returns is computed to yield VaR and the current asset returns. 

 

3. Monte Carlo simulation – It randomly simulates future asset returns. Monte Carlo simulation is generally 

used to compute VaR for portfolios containing securities with non-linear returns because the computational 

effort required is non-trivial. Monte Carlo simulation is conceptually simple, but is generally computationally 

more intensive than both the VCV and HistSim models. The generic Monte Carlo VaR calculation comprises the 

following steps: 

 

1. Predefine N, the number of iterations to perform. 

2. For each iteration in N,  

• Generate a random scenario of market moves using some existing market model. 

• Revalue the portfolio under the simulated market volatility scenario. 

3. Compute the portfolio profit or loss (PnL) under the simulated scenario. For doing so, subtract the 

current market value of the portfolio from the market value of the portfolio computed in the 

previous step. 

4. Sort the resulting PnLs to obtain the simulated PnL distribution for the portfolio. 

5. VaR at a particular confidence level is then calculated using the percentile function.  

 

V. PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization (PSO) is a biologically inspired evolutionary computing paradigm. It is a 

population-based stochastic optimization procedure inspired by the sociocognitive behavior of bird flocking or fish 

schooling and was developed by Kennedy and Eberhart [15, 16, 17] in 1995. The original intent was to graphically 

simulate the choreography of a bird flock or fish school. However, it was found that particle swarm model can be 

used as an optimizer [17]. The optimization technique starts with a population of random solutions. It searches for an 

optimum by iterating through generations. But, unlike other evolutionary algorithms such as the genetic algorithms, 

PSO does not employ any evolution operators like crossover and mutation. In PSO, the potential solutions are called 

particles, which fly through the problem space by following the current optimum particles [17]. 

During the algorithm, each particle keeps track of its coordinates associated with the best solution (fitness) it has 

achieved so far in the problem space [17]. This stored fitness value is referred to as the pbest. Another "best" value 

obtained so far by any particle in the neighbourhood of the particle is also tracked by the particle swarm optimizer. 

This is referred to as the lbest [18]. When a particle incorporates the entire population as its topological neighbours, 

the best value is a global best and is called the gbest. 

The local version of PSO comprises, at each time step, changing the velocity of (accelerating) each particle 

toward its pbest and lbest locations [17]. Acceleration is weighted by a random term, with separate random numbers 

being generated for acceleration toward pbest and lbest locations [17, 18]. 

The performance of each particle in a PSO is determined by its closeness from the global optimum. The metric 

commonly used for this purpose is the fitness function of the optimization problem. Each particle in the swarm 

possesses (i) the current position of the particle, (ii) the current velocity of the particle and (iii) the personal best 

position of the particle. 

PSO has been successfully applied in many application areas due to its ability of getting better results in a faster, 

cheaper way compared with other methods [17]. Moreover, PSO requires only a few parameters to adjust. 
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A. The PSO algorithm 

In PSO, the swarm comprises a set of particles P= p1, p2, … pk [17]. An objective function f represents a candidate 

solution of the optimization problem at hand. This corresponds to the position of a particle. At a time t, pi has a 

position �̅�
� and a velocity �̅�

� associated to it [17]. The particle's personal best position that particle pi (with respect to 

f) has ever visited until time step t is represented by vector ���
�. In addition, pi receives information from its 

neighborhood Ni ⊆ P. In the standard PSO algorithm, the population topology of the swarm is represented by a graph 

G = {V, E}, where each vertex in V corresponds to a particle in the swarm and each edge in E indicates a relation 

between a pair of particles [17]. 

An initialization region θ′⊂ θ is chosen to generate the random positions for the particles in the PSO algorithm 

[17]. Velocities are usually initialized within θ′. However, velocities can also be initialized to zero or to small 

random values to prevent particles from leaving the search space during the first few iterations [17]. 

During the algorithm, these velocities and positions of the particles are iteratively updated until a stopping 

criterion is met [15]. The update rules are [17]: 

 

�̅�
�
� = �̅�

� + ∅����
�����

� − �̅�
�� + ∅����

�(��̅
� − �̅�

�)         (7) 

 

with �̅�
�
� = �̅�

� + �̅�
�
�                                                   (8) 

 

where w is a parameter called inertia weight [17], ϕ1 and ϕ2 are two parameters called acceleration coefficients [17], 

���
� and ���

� are two n×n diagonal matrices in which the entries in the main diagonal are random numbers uniformly 

distributed in the interval [0,1] [17]. These matrices are regenerated at each iteration. The vector ��̅
� is referred to as 

the neighbourhood best. It is the best position ever found by any particle in the neighborhood of particle pi, i.e., f (��̅
�) 

= f(���
�) ∀ pj ∈ Ni [17]. 

For properly chosen values of w, ϕ1 and ϕ2, the particles' velocities do not grow to infinity [19]. In the lbest [18] 

model, a swarm is divided into overlapping neighborhoods of particles and the best particle is referred to as the 

neighborhood best particle [17]. There may be various neighborhood configurations [20] in PSO depending on 

particle indices or topological configurations. It is clear that gbest is a special case of lbest with l = s, where s is the 

swarm size. It may be noted that the lbest approach results in a larger diversity; however, it is slower than the gbest 

approach. 

The three terms in the velocity-update rule influence the local behaviours of the particles [17]. The first term, 

referred to as the inertia or momentum term [17, 21], serves as a memory of the previous flight direction. It also 

prevents the particle from drastically changing direction in the near future. The second term, called the cognitive 

component term, models the intent of the particles to return to the previously found best positions [17]. The third 

term, called the social component term [17, 22, 23], quantifies the performance of a particle relative to its 

neighbours, thereby representing a standard that should be attained. 

It has been observed that in some cases, particles can be attracted to regions outside the feasible search space θ 

[17]. Engelbrecht [24] devised mechanisms for preserving solution feasibility and proper swarm operations for this 

purpose. One of the alluring mechanisms for preserving feasibility is one in which the particles going outside θ are 

not allowed to improve their personal best position. In such cases they are attracted back to the feasible space in 

subsequent iterations [17]. 

VI. RESULTS 

The optimization of the portfolio asset allocation problem has been addressed with the help of a particle swarm 

optimization technique. From the objective of faithful asset allocation at a given confidence level, the problem boils 

down to the minimization of the Value-at-Risk (VaR) of the portfolio. The HistSim model has been used for the 

estimation of VaR. Equation (6) has been employed for this purpose. Moreover, this function has been used as the 

fitness function in the particle swarm optimization procedure. The parameters used for the particle swarm 

optimization procedure are given in Table I. 

TABLE I: Particle Swarm Optimization parameters Employed 
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Sl. No. PSO Parameter Values used 

1. Number of Generations (500, 1000) 

2. Inertia weight 0.8 

3. Acceleration Coeffient (ϕ1) 1.5 

4. Acceleration Coeffient (ϕ2) 1.5 

 

The portfolio asset allocation optimization procedure has been demonstrated on a collection of 20 portfolios with 

several asset combinations. The optimization procedure using the particle swarm optimization technique has been 

run with two different numbers of generations viz., 500 and 1000 with the constants as indicated in Table I. The 

average of the best fitness results are archived and reported. Table II lists the different archived average optimized 

portfolios over two different number of generations, their costs and VaR measures for a confidence level of 95%. 

 

TABLE II: Optimized portfolios with their costs and VaRs at a confidence level of 

95% 

Portfolio No. 
Portfolio Cost (in currency 

units) 
Value-at-Risk 

1 10,000.0 0.8000000 

2 35,983.1 0.1760900 

3 21,586.5 0.6430960 

4 30,723.6 0.9005500 

5 43,256.7 0.4205077 

6 25,517.2 0.5756070 

7 22,184.6 0.1652210 

8 28,642.3 0.0591332 

9 41,275.5 0.7441580 

10 49,357.3 0.5116115 

11 47,272.3 0.3877810 

12 46,233.5 0.3486000 

13 10,499.9 0.8381680 

14 22,066.8 0.2657900 

15 19,161.5 0.8986830 

16 43,286.6 0.7335820 

17 15,362.6 0.4645280 

18 44,334.0 0.7403780 

19 17,311.5 0.2598440 

20 13,515.1 0.2357380 

 

From the table, it is evident that only certain combinations of assets in some portfolios have their VaR within the 

permissible range as decided by the tolerance factor 0.9. These permissible portfolios Pk, k = {1, 3, 4, 6, 9, 13, 15, 16, 

18}, are depicted in boldface in Table II. Hence, it is clear that the optimization process is able to select those 

portfolios with the permissible loss or VaR. 

Table III demonstrates another example application of the proposed portfolio optimization based asset allocation 

approach. Here, the portfolio optimization procedure is carried out subject to a certainty rating of 52.0604%, which 

signifies the gradation of a particular portfolio in terms of the certainty in achieving a desired return over the holding 

period. 

 

TABLE III: Ordered portfolios according to optimizations based on minimum VaR  

and certainty rating of 52.0604% 

Portfolio No. Portfolio Cost (in currency Value-at-Risk 
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units) 

1 2,375.00 0.496709 

2 2,433.12 0.508864 

3 2,491.58 0.512091 

4 2,492.19 0.521218 

5 2,496.09 0.522035 

6 2,498.02 0.522437 

7 2,499.51 0.522750 

8 2,499.79 0.522807 

9 2,499.88 0.522826 

10 2,499.94 0.522839 

11 2,500.00 0.522839 

12 2,500.00 0.522852 

13 2,500.00 0.522852 

14 2,500.00 0.522852 

15 2,500.00 0.522852 

16 2,500.00 0.522852 

17 2,500.00 0.522852 

18 2,500.00 0.522852 

19 2,500.00 0.522852 

20 2,500.00 0.522852 

 

This example also employs 20 different portfolios with several asset combinations. The corresponding portfolio 

costs and their optimized VaR measures are also shown in the table. The optimized portfolios are listed in Table III in 

order of increasing VaR. From the table, it is clear that out of participating 20 different portfolios, only three 

portfolios marked in boldface are eligible and stand in good stead given the certainty rating of 52.0604%. 

From the results obtained in Tables II and III, it is evident that a faithful selection/allocation strategy of assets in a 

portfolio can be derived at by resorting to an optimization procedure. The beauty of the optimization procedure is 

that it takes into account several constraints in the form of the certainty ratings or confidence levels thereby ensuring 

an effective optimum portfolio management in terms of minimum expected losses. 

VII. DISCUSSIONS AND CONCLUSION 

Portfolio management has assumed paramount importance as a systematic discipline in the fields of economics 

and finance given the diversification in investment strategies. This article attempts to evolve a selection and 

allocation strategy of portfolios in a volatile market condition by means of the optimization of the Value-at-Risk 

(VaR) measures of the portfolios under consideration. A particle swarm optimization procedure is adopted on 

historical portfolio data for this purpose. Faithful selection results are exhibited on a collection of 20 different 

portfolios with several asset combinations. 

The proposed approach aims at minimizing the VaR measures of the portfolios under consideration. Methods 

however remain to be investigated to incorporate the aspect of return maximization in the portfolio allocation 

scenario through multiobjective optimization techniques. The authors are currently engaged in this direction. 
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